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Abstract. The dressing effect due to the quantum nature of phonons may cause the creation
of bound states of several vibrons in the molecular chain. The possibility of creating soliton
states of this type is discussed for the simple Fröhlich one-dimensional model. The regions of
the system parameter space where different mechanisms dominate the behaviour of such entities
are characterized.

1. Introduction

Long-distance charge (electron–proton, etc) and intramolecular vibrational energy (amide-I
or C–O stretching mode quanta vibrons) transfer through the polypeptide chains of anα-helix
molecule plays an important role in a number of phenomena in biological systems including
photochemical reactions, photosynthesis and metabolism [1–8]. Therefore the explanation
of transport mechanisms in anα-helix molecule is of great importance to understanding
these phenomena on a microscopic level. A potential solution was proposed by Davydov
and co-workers [2, 4, 6, 7] who introduced the soliton model as a basic theoretical framework
for the description of the role of anα-helix molecule in transfer processes. The main idea
of the Davydov theory (DT) is that the exciton (we use this term here to denote electron,
vibron, proton, etc) may be trapped by the local distortion of the host lattice and then
resonantly transferred along the chain in the soliton form. Such entities are usually called
Davydov solitons (DSs) [8]. However, in the numerous studies on the Davydov model
the use of this term is not unique and, in order to avoid any confusion which may arise
because of the arbitrariness in its use, we emphasize that DSs are used by us to denote stable
large-radius particle-like solutions of the set of equations for exciton and lattice (phonon)
variables.

In its simplest version, the Davydov model for a molecular chain is specified by the
following Fröhlich-like Hamiltonian:

H = 1
∑

n

A+
n An − J

∑
n

A+
n

(
An+1 + An−1

) + 1√
N

∑
q,n

Fq exp
(
iqnR0

)
A+

n An

(
bq + b+

−q

)
+

∑
q

h̄ωqb
+
q bq (1)

where A+
n (An) describes the presence (absence) of the excitation with the energy1

on nth molecular group,b+
q (bq) creates (annihilates) phonon quanta with frequency
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ωq , while Fq denotes the exciton–phonon coupling parameter. It is given byFq =
2iχ(h̄/2Mωq)

1/2 sin(qR0) in the case of coupling with acoustic phonons with frequency
ωq = ωB sin|qR0/2|, ωB = 2(κ/M)1/2 denotes maximal phonon frequency,κ is the spring
constant,M denotes the mass of the molecular group,R0 denotes the lattice constant, and
finally J andχ represent the intersite dipole–dipole transfer integral and coupling strength,
respectively. In particular calculations we shall useωq ' c0|q| where c0 = R0

√
κ/m

denotes the sound velocity. In the case of coupling with dispersionless optical modes we
haveωq = ω0 ≡ constant andF = χ(h̄/2Mω0)

1/2; the meaning of the symbols is as before.
Obviously this corresponds to the well known Holstein molecular crystal model [9].

The only connection of this simplified model with realistic biological systems are the
values of the parameters appearing in (1). Consequently, its relevance for the description of
transport phenomena in a particular biological context is of limited validity. This especially
concerns its applicability at physiological (T ∼ 300 K) temperatures. For that reason,
different thermalization schemes were utilized in order to simulate soliton dynamics and to
estimate the lifetime of the soliton at finite temperatures [10–18]. The results are rather
different, and sometimes mutually quite opposite. Thus, while some workers find that
thermal fluctuations destabilize the soliton, causing its finite lifetime to be too short to be
relevant in realistic conditions [10, 11, 17, 18], others find that thermal effects even support
soliton creation and its stability [13, 16].

The origin of these discrepancies lies, in part, in unjustified application of different
approximate approaches without precise understanding of their domain of applicability.
Namely, as known from the general theory of self-trapping (ST) phenomena [19–21],
to which this problem obviously belongs, the choice of the theoretical tool, and the
physical picture following from it, depend strongly on the mutual ratio of three basic
parameters determining the energy spectrum of the system: the width 2J of the exciton
band, the maximal phonon energy ¯hωB and the small polaron binding energyEB =
(1/N)

∑
q(|Fq |2/h̄ωq). It is useful to define the so-called adiabaticity parameterB '

2J/h̄ωB and coupling constantS ' EB/h̄ωB in order to discuss different extreme limits
[22–24].

Thus, in the adiabatic limit (B � 1), lattice distortion with high inertia fails to follow
the exciton motion and it forms an essentially static potential well where that particle may be
trapped. Depending on the value of coupling constant, the spatial extent of an entity created
in this way, the polaron, may vary from being concentrated around one site only (S � 1),
i.e. an adiabatic small polaron, to be spread over a large number of lattice sites (S < 1),
i.e. a large adiabatic polaron or soliton in one-dimensional media. Under these conditions
(B � 1) the phonon subsystem behaves in a classical way and a theoretical description
is possible on the basis of the time-dependent version of the Pekar [21, 25] semiclassical
variational method: the DavydovD2 ansatz[22–24].

For that reason the thermalization procedures of Lomdahl and Kerr [10, 11], consisting of
a numerical analysis of the Davydov set of equations perturbed by phenomenological random
forces simulating the influence of thermal bath, and that of Cottingham and Schweitzer [17]
and Schweitzer [18] involving direct perturbational evaluation of soliton lifetime on the
basis of a microscopic model, could be applied in the adiabatic limit only. In both cases
examination was caried out within the framework of theD2 ansatz. Unfortunately the
common set of parameters used in the studies of vibron transfer in anα-helix molecule
[4, 5, 10, 18, 19] (J = 1.55× 10−22 J, h̄ωB =(18–21)×10−22 J andχ = (35–62) pN) and
explanation of the optical spectra of acetanilide (ACN) (J ' 4 cm−1 or 7.9 × 10−23 J
and h̄ωB ' 57 cm−1 or 1.13 × 10−21 J [26, 27]) clearly correspond to the non-adiabatic
limit (B ' 0.14–0.17) where quantum lattice fluctuations play the essential role so that the
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application of theD2 ansatzis inconsistent. Recent detailed analysis in a series of papers of
Brown and co-workers [22, 23] and our group [24] indicates that the single-vibron polaron
states in anα-helix and ACN, if any exist, should correspond to the vibron analogue of
Holstein’s small polaron (non-adiabatic small polaron) [9] rather than a soliton. In this way
these results confirm the ideas of Alexander [26] and Alexander and Krumhansl [27] who
used the Holstein small-polaron theory in the explanation of optical spectra of ACN and
other related molecules.

Note that we do not criticize these methods but rather point to their domain of
applicability. Thus, if one uses different sets of parameters, e.g. in the case of an extra
electron transfer along anα-helix [3] or conducting polymers [28] where the adiabaticity
condition is satisfied, these methods may be utilized; yet one should expect results quite
different from those in the original papers.

The system properties and the character of polaron states in the non-adiabatic limit are
dominated by the quantum nature of phonons. In this case the ‘dressing’ effect occurs and
the exciton is surrounded by the cloud of virtual phonons engaged in the creation of short-
ranged lattice distortion which follows its motion instantaneously [9, 19, 20]. As a result,
an increase in the exciton effective mass and a decrease in the effective transfer matrix
elementJ arises. Furthermore, in many particle systems, ‘dressing’ causes the effective
attractive interaction between the different particles which may lead to the creation of their
bound state: an exciton or more precisely a vibron drop [29–35]. These solutions may
attain a soliton form [36] depending on the values of the system parametersS andB. This
effect has not been examined so far, within the DT, and it will be the subject of this paper,
where we shall analyse the conditions for the existence of solitons representing the bound
state of the large number of vibron quanta. In what follows, we shall call such quantities
multivibron solitons. Special attention will be devoted to the study of the character of these
states. In particular, we wish to determine whether they arise as a consequence of the ST of
more vibrons in the common potential well created by the lattice distortion or on account
of the induced vibron–vibron interaction. Finally, we shall specify the conditions favouring
a particular mechanism.

For that purpose we shall apply the variational method well known from the small-
polaron theories [37–40] based upon the application of unitary transformation technique
developed by Lang and Firsov [37]. Note that the so-calledD1 ansatz[22–24], which may
be considered as a generalization of the variational methods of Emin [39] and Toyozawa
[40], is inapplicable for that purpose since it successfully describes the effects of small-
polaron narrowing of the exciton bandwidth but fails to include the effects of dynamical
exciton–exciton (vibron–vibron) interaction.

The importance of this examination follows from the fact that in some recent studies it
was proposed that ST of the bound state of two or more vibron quanta is more relevant in
real biological systems [11, 14, 15].

2. Model Hamiltonian of the system and soliton solution

In order to examine the influence of quantum fluctuations on the multivibron soliton, and
especially to find the conditions for their existence, we shall consider the system described
by the Hamiltonian (1) but populated withN vibrons:

∑
n A+

n An = N , and in the first
instance we rewrite (1) in terms of new, i.e polaron, operatorsBn = U+AnU describing
the ‘dressed’ particle (polaron), consisting of the original particle surrounded by the phonon
cloud andaq = U+bqU representing new phonons in the chain with shifted equilibrium
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positions of the molecular groups.U is the unitary operator given by

U = exp

(
1√
N

∑
n,q

fq exp
(−iqnR0

)
A+

n An

(
b−q − b+

q

))
fq = f ∗

−q (2)

defining the so-called incomplete Lang–Firsov transformation. Herefq denotes the
variational parameter or, more precisely, the set of them—one for eachq, whose value
defines the degree of dressing and the strength of the induced phonon-mediated vibron–
vibron interaction. It should be determined by the minimization of the ground-state (GS)
energy of the system. However, the variational procedure is rather complicated since it
demands the optimization of a function (GS energy) of the large number of parameters
and, even with the use of sophisticated numerical methods, one can hardly obtain a
comprehensive physical picture in the whole parameter space of the system. Yet, it can be
greatly simplified by introducing the assumption of equal dressing fractions for all modes
[22–24, 39]: fq = −δF ∗

q /h̄ωq , where δ is the new variational parameter measuring the
relative extent of the induced lattice distortion. In this way the whole set of variational
parameters is replaced by a single parameter. At first sight it looks like a very strong
assumption; however, according to some previous results [22–24, 39–42], concerning the
single polaron and related problems, we know that this method gives qualitatively the same
results asq-dependent methods with slightly higher estimates for the GS energy. Within this
approximation, the model Hamiltonian (1) is given in terms of new operators as follows:

H = [
1 − δ(2 − δ)EB

] ∑
n

B+
n Bn − J

∑
n

(
B+

n Bn+12
+
n 2n+1 + HC)

+ 1 − δ√
N

∑
q,n

Fq exp
(
iqnR0

)
B+

n Bn

(
aq + a+

−q

)
+

∑
q

h̄ωqa
+
q aq − δ(2 − δ)EB

[
1
2

∑
n

B+2
n B2

n

+ 1
4

∑
n

(
B+

n B+
n+1Bn+1Bn + B+

n B+
n−1Bn−1Bn

)]
. (3)

Here

2n = exp

(
δ√
N

∑
q

f ∗
q

h̄ωq

exp
(−iqnR0

) (
aq − a+

−q

))
.

Written in this form, our model Hamiltonian contains an additional term, the last in the
above equation, describing an effective vibron–vibron interaction. In this way it gives us the
possibility of examining the role of dynamical effects in the soliton formation. However, this
advantage is offset by the appearance of the additional vibron–phonon interaction, highly
non-linear in phonon operators, which greatly complicates further analysis. Thus, in order
to deal with the difficulties arising from this term, we shall proceed in a typical mean-field
manner [22–24, 43] which was successfully utilized previously in the examination of the
problem of the exciton dynamics in the case of strong coupling with lattice vibrations,
when the polaronic effect (‘dressing’) could affect exciton properties significantly. In what
follows, we shall avoid the details of the calculational procedure which can be found in a
number of papers (see, e.g. [43] and references therein) and let us point out just that the
main step consists in substituting the above Hamiltonian by the effective Hamiltonian in
which the transfer integralJ is replaced by its mean-field value:

Jeff = J
〈
2+

n 2n±1

〉
ph

= J exp
[−δ2S(T )

]
.
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Here

S(T ) = 2

N

∑
q

|Fq |2
(h̄ωq)

2 sin2

(
qR0

2

)(
2ν̄q + 1

)
(ν̄q is the equilibrium phonon distribution) denotes the temperature-dependent coupling
constant introduced in [22, 23]. It approaches the previously defined form atT = 0:
S(0) = (8/3π)(EB/h̄ωB). The explicit form of the effective Hamiltonian will be formulated
in analogy with the application of the Bogolyubov theorem for a single exciton in [43].
Adding and subtracting the termH ′ = J

∑
n(B

+
n Bn+1〈2+

n 2n+1〉+ HC) to the Hamiltonian
(3) we see that it can be represented as a sum of two terms:H = Heff + Hint where:

Heff = [
1 − δ(2 − δ)EB

] ∑
n

B+
n Bn − Jeff

∑
n

B+
n

(
Bn+1 + Bn−1

)
+ 1 − δ√

N

∑
q,n

Fq exp
(
iqnR0

)
B+

n Bn

(
aq + a+

−q

)
+

∑
q

h̄ωqa
+
q aq − δ(2 − δ)EB

[
1
2

∑
n

B+2
n B2

n

+ 1
4

∑
n

(
B+

n B+
n+1Bn+1Bn + B+

n B+
n−1Bn−1Bn

)]
(4)

and

Hint = J
∑

n

{
B+

n Bn+1

[〈
2+

n 2n+1

〉
− 2+

n 2n+1

]
+ HC

}
. (5)

In the spirit of the mean-field method we shall base our further analysis upon the effective
Hamiltonian (4) assuming the smallness of the interaction term. The validity of this
assumption will be analysed subsequently.

The main advantage of the Hamiltonian (4) with respect to the original Hamiltonian
is that it includes the effective dynamical inter-vibron interaction. Now it describes the
system of the ‘dressed’ vibrons (vibron polarons) interacting mutually with each other and
with lattice vibrations. In this way it could be the basis for examination of the whole scale
of the many-particle effects in a multivibron system such as the creation of two-vibron,
three-vibron or multivibron bound states. In the present context, however, we are only
examining the possibility of the soliton (i.e. multivibron soliton) creation. Obviously two
competing mechanisms could give rise to soliton formation: vibron–phonon and vibron–
vibron interaction. Which prevails depends on the value ofδ, whose determination is our
primary task. In this context the value ofδ will also determine the nature of phonon
behaviour characteristic for the particular mechanism. Namely, according to the previous
results [22–24] concerning the single-vibron transfer, the ST mechanism prevails if the
phonons, engaged in the formation of the lattice distortion, behave as the classical field
while the vibron–vibron interaction dominates soliton formation when their quantum nature
prevails.

In order to find the multiquanta soliton solution we shall apply a slightly modified
standard DavydovD2 ansatzwhich is based upon the following trial state of the system:

|9(t)〉 = |β(t)〉 ⊗ |α(t)〉 |β(t)〉 =
∏
n

|βn(t)〉 |α(t)〉 =
∏
q

|αq(t)〉 (6)

where |βn(t)〉 and |αq(t)〉 are coherent states of the polaron operatorBn and the phonon
operator aq , respectively. The trial state (6) is normalized to unity:〈9|9〉 = 1.
If the number of ‘dressed’ vibrons in the system isN , the following relation holds:
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N = 〈9| ∑n B+
n Bn|9〉 = ∑

n |βn|2. It is easy to prove, using the time-dependent
variational principle [22, 23], that coherent amplitudesβn(t) andαq(t) satisfy the following
set of Hamiltonian equations:

ih̄β̇n(t) = ∂Heff

∂β∗
n

ih̄α̇q(t) = ∂Heff

∂α∗
q

(7)

whereHeff = 〈9|Heff |9〉 corresponds to the classical Hamiltonian function.
The proposedansatz is flexible enough to describe soliton properties in the whole

parameter space of the system (S–B plane); so we have the possibility, by calculating the
dependence of the dressing fractionδ on the system parameters, to determine whether the
classical or quantum nature of lattice vibrations dominates the system properties, and the
soliton character in particular. To see how the value ofδ is related to the nature of the
phonons involved in the creation of lattice distortion, let us find the expectation value of
the lattice displacement operatorûn, expressed in terms of new phonon operators, in the
trial state (6). We easily find that

un = 〈9|ûn|9〉 = 1√
N

∑
q

(
h̄

2Mωq

)1/2(
αq + α∗

−q

)
exp

(
iqnR0

)
+ 2√

N

∑
q,m

fq

(
h̄

2Mωq

)1/2

exp
[
iq(n − m)R0

]|βm|2. (8)

We see that lattice distortion consists of two competing contributions. The first, measured
by the magnitude of the coherent phonon amplitudes−αq , defines the slow or classical part
of lattice distortion while the remaining contribution arises from the quantum corrections.
Going over to continuum approximation and solving the equation of motion (7) for phonon
amplitudes, following the standard proceedure [4–8, 22–24] we find in the continuum
approximation that

αq(t) = − (1 − δ)F ∗
q

h̄(ωq − qv)

∫ +∞

−∞
exp(−iqx) |β(x − vt)|2 dx

R0
. (9)

According to (8) and (9) it follows thatδ is limited to the range 0< δ < 1. Thus when
δ vanishes, only theαq contribution toun survives and therefore the phonon subsystem
behaves in a classical way and the soliton solution, if any exist, corresponds to theN
vibrons trapped in the common potential well. Such solitons were examined by Lomdahl and
Kerr [11] who, in their numerical simulations, found that increasing the number of quanta
to N = 6 leads to the enhanced stability of solitons even at physiological temperatures.
If, however, δ → 1, αq → 0 and the quantum nature of phonons prevails so that a
soliton may be created on account of the effective vibron–vibron interaction, approximately
EB

∑
n B+2

n B2
n only. Exact eigenstates of such system are known on the basis of the Bethe

ansatz, and, if the number of particles in the cluster is large enough, these solutions attain
a soliton form [36]. This condition, namely a large value of the vibron population, is also
the condition for the applicability of the above-proposed factorization of the vibron part
of trial state which is equivalent to the application of the Hartree approximation. Clearly,
according to [31–33],N cannot be too large because its increase would shrink the soliton
width and the applicability of the continuum approximation breaks down.

Eliminating the phonon coherent amplitudes from the equation of motion for vibrons
by virtue of equation (9) and going over to continuum, we obtain

ih̄β̇(x, t) = [
1 − δ(2 − δ)EB − 2Jeff

]
β(x, t) − Jeff R2

0βxx(x, t)
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− 2EB

[
(1 − δ)2

1 − v2/c2
+ δ(2 − δ)

]
|β(x, t)|2β(x, t). (10)

Dispersion of non-linear terms was neglected; so we have dropped the terms∝
R2

0(|β(x, t)|2)xxβ(x, t). Equation (10) possesses a soliton solution subject to the
normalization conditionN = ∫

(dx/R0)|β(x, t)|2:

β(x, t) = exp[i(kx − ωt)] N
(

µ

2

)1/2

sech

(
µN
R0

(
x − x0 − vt

))
. (11)

Here the soliton quasi-momentumk and the so-called soliton parameterµ, which is related
to soliton width as1l ≈ R0/Nµ, are given as

k = m∗v
h̄

≡ h̄v

2Jeff R2
0

µ = EB

2Jeff

[
(1 − δ)2

1 − v2/c2
+ δ(2 − δ)

]
(12)

while ω is found from the following expression:

h̄ω = 1 − δ(2 − δ)EB − 2Jeff + m∗v2

2
− N 2EB

2

4Jeff

[
(1 − δ)2

1 − v2/c2
+ δ(2 − δ)

]2

. (13)

Finally substituting (12) into the explicit expression forHeff , we obtain the system energy
and the soliton effective mass:

E = N [
1 − δ(2 − δ)EB − 2Jeff

] + msv
2

2
−

[
(1 − δ)2

1 − v2/c2
+ δ(2 − δ)

]2
E2

BN 3

12Jeff

(14)

ms = Nm∗
[

1 + 4EB
2(1 − δ)2N 2R2

0

3c2h̄2

]
. (15)

Clearly, almost all soliton features and the nature of the mechanism leading to its formation
are determined by the value ofδ. Therefore one must determine the dependence ofδ on
the system parameters in order to classify the soliton states and to define the conditions for
their existence. This is the subject of the next section.

3. Optimization of the dressing parameter and the character of the soliton

The results of the preceding paragraph were obtained for a fixed but arbitrary value ofδ

with the only restriction 0< δ < 1, and various values ofδ could be used to obtain different
types of soliton solution.

For the given set of the system parameters, however, the choice ofδ is not arbitrary and
there should exist an optimal value ofδ corresponding to the minimum-energy state. For this
optimized value ofδ, the above time-dependent solution (11) describes the evolution near
this minimal-energy state [22]. We shall find those optimized values ofδ by minimizing
the GS energy of the system which follows from (14) in the static (v = 0) limit:

EGS = N {
1 − δ(2 − δ)EB − 2J exp

[−δ2S(T )
]} − E2

BN 3 exp[δ2S(T )]

12J
. (16)

Stable (minimum-energy) eigenstates of the system correspond to those values ofδ which
are the solutions of equation∂EGS/∂δ = 0 subject to the condition∂2EGS/∂δ2 > 0.
The stationarity condition (∂EGS/∂δ = 0) can be solved as the quadratic equation for
B(T ) exp[−δ2S(T )], whereB(T ) = (2JEB)S(T ) = (8/3π)(2J/h̄ωB)S(T )/S(0) denotes
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the temperature-dependent adiabaticity parameter. In this way we obtain the self-consistent
equation for the dressing parameter:

δ =
[

1 + 2B(T ) exp[−δ2S(T )]

1 + K

]−1

K =
√

1 + 2N 2S(T )2δ2

3(1 − δ)2 . (17)

It is written in the form which we found the most convenient for the numerical procedure
[24].

In order to define physically meaningful solutions ofδ we simply insert the above-
obtained result forB(T ) exp[−δ2S(T )] into ∂2EGS/∂δ2 > 0. In this way we have
eliminated the adiabaticity parameter, and the stability condition is given as follows:

S(T ) <

√
3

2N
1 − δ

δ

[√
1 + 2N 2

3δ2(1 − δ)4 − 1

]1/2

. (18)

Soliton solutions are restricted by another conditionNµ < 1 which determines the
applicability of the continuum approximation. Combining it with equation (17), we obtain
the condition for the applicability of the continuum approximation:

S(T ) <
6

5N
1 − δ

δ
. (19)

Strictly speaking, applicability of the continuum approximation demands thatNµ � 1.
However, we have adopted here the less restrictive criterion, which is common in the
continuum polaron model [20, 41], where the extent of the polaron approximately equal to
the lattice constantR0 has been used as the boundary separating a large polaron (soliton)
from a small polaron (see also the second reference of [40]). From that condition one
can find the values of the physical parameters of the system where the transition from
large polaron to small polaron occurs. In the present context the analogous condition, i.e.
1l/R0 ' 1, should be understood as the boundary where the soliton collapses into the
extremely localizedN -vibron bound state.

Thus, in order to classify stable eigenstates of the system, to analyse the possibility of
soliton formation and finally to determine their character and which mechanism dominates
their creation, one should find the values ofδ for the particular values ofS(T ) andB(T ) by
solving equation (17). This can be done only numerically and our results are visualized in
figures 1–3 where we have plotted, for a few fixed vibron populations (N = 5, 10 and 100,
respectively), the set of adiabatic curves; the curvesS(T ) = S(δ, B(T )) each corresponding
to a particularB(T ). The values ofB(T ) are chosen to span the whole range of adiabaticity
varying from non-adiabatic (B(T ) � 1) to the adiabatic (B(T ) � 1) limit. In this way,
the interpretation of our result is quite simplified with respect to the case when one chooses
to plot δ = δ(S(T ), B(T )) which looks like a natural choice. Using equations (18) and
(19), one may define the stability line (S(T ) equals the right-hand side (RHS) of (18))
and continuum boundary (S(T ) equals the RHS of (19)). The stability line separates the
stable from the unstable solutions and according to (18) the physically meaningful region of
the S(T )–δ plane corresponds to those points lying below the stability lines (solid lines in
figures 1–3) while soliton solutions correspond to those points lying below the continuum
boundary (broken (long dashes) curves in figures 1–3).

Looking at these adiabatic curves as a functional dependence of the dressing parameter
on coupling constant and adiabaticity, we see that, as long asB(T ) is less than some critical
value, these lie below the stability line and therefore include only minima in the GS energy.
When B(T ) exceeds this critical value, each adiabatic curve intersects the stability line
at one point. Consequently each adiabatic curve for eachS(T ) which is higher than the
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Figure 1. Adiabatic curvesS = S(δ) (N = 5) for a few chosen values of adiabaticity parameter
B where these curves from left to right, correspond toB(T ) = 10, 5,BC ' 1.014, 0.5 and 0.1
respectively: ——, so-calledstability line; — — —, continuum boundary; - - - -, part of each
adiabatic curve forB(T )) > BC corresponding to the unstable region.

Figure 2. Adiabatic curves forN = 10 and the same set of adiabatic parameters (BC ' 1.294).

critical value has two solutions forδ corresponding to GS extrema. Clearly, owing to the
stability condition (18), only the lower solution defines the stable eigenstate of the system.
The critical adiabaticity parameter corresponds to that adiabatic curve which has a single
common point with the stability line. Obviously it falls ontoδ = 1. Thus, taking the limit
δ → 1 in the expression for stability line, we find thatSC = 4

√
6/(2

√N ). In a similar way
by settingδ → 1 in the self-consistent equation forδ and substitutingS(T ) = SC we obtain
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Figure 3. The same set of adiabatic curves forN = 100 (BC ' 3.455).

the critical adiabaticity as follows:BC = (
√N /2 4

√
6) exp( 4

√
6/2

√N ).
Concerning the validity of the soliton picture we see from figures 1–3 that, since the

continuum boundary always lies below the stability line, the condition for the applicability
of the continuum approximation is also the condition for soliton existence. To find the range
of coupling constants in which the soliton may exist for a particular adiabaticity, one must
find the crossing points of each adiabatic curve with the continuum boundary. So we find
thatδ0 ≈ 1/(1+ 5

6B(T )) which separates those values ofδ corresponding to soliton solutions
from those which define a second type of solution, namely an intrinsic self-localized mode
(ISM). Insertingδ0 into the continuum boundary we find the simple condition

S(T ) <
B(T )

N . (20)

Thus the soliton may exist for each adiabaticity ifδ < δ0 and if (20) holds. WhenS exceeds
this value, the soliton collapses into an extremely narrow vibron complex.

This indicates that in the multivibron system interacting with the lattice, we can expect
two types of solution: the soliton solution if condition (20) is satisfied and the extremely
localizedN -vibron cluster in the opposite case. These solutions, the ISMs, were examined
by Takeno and co-workers [44–47] and Zhu and Kobayashi [47] who found that they may
arise in systems of strongly interacting phonons [44], magnons [45, 46] and excitons [47].
However, because of the application of the continuum soliton solution (11) in our variational
treatment, i.e. optimization of the dressing parameter, our results and conclusions concern
solitons exclusively and, for the investigation of the properties of the second type of solution,
one must take into account the discreteness of the lattice.

The character of the soliton and the mechanism which dominates its formation are
determined by the value ofδ. As one can see from figures 1–3 in the extreme adiabatic
limit δ ≈ [1/(1+B(T )] → 0, the semiclassical nature of the phonon prevails and the soliton
arises as a result of ST ofN vibrons in a common potential well. In the intermediate range
of adiabaticity, but still higher thanBC , both mechanisms give rise to soliton formation but
still ST is dominant. Lowering of the adiabaticity disturbs this balance to the benefit of
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Figure 4. Phase diagram of system forN = 10: - - - - boundary between the regions in
parameter space (S–B plane) corresponding to stable (lower) and unstable states: — — —,
continuum boundary in theS–B plane separating the soliton region from the region in which
ISM prevails. The vertical lineB0 = 0.65 defines the domain of applicability of the present
‘partial dressing’ approach. If system parameters correspond toB 6 B0, one must takeδ = 1.

the vibron–vibron interaction. In the non-adiabatic limit the soliton can exist in the weak-
coupling limit, but the ST mechanism could play a certain role in soliton formation in the
extremely weak case only ifB is not too small. Increasing the coupling constant, even by
a very small amount, rapidly turnsδ to unity, and soliton formation is almost exclusively
influenced by the effective vibron–vibron interaction.

On the basis of these results, one may construct, for a particularN , the phase diagram
of the system and in this way determine in which part of the parameter space of the system
a particular type of solution would be expected. In figure 4 we have plotted the phase
diagram of the system forN = 10. From the crossing points of each adiabatic curve with
the stability line we may determine the physically meaningful region in the parameter space,
i.e. those points in theS(T )–B(T ) plane corresponding to the minimum-energy eigenstates
of the system. It lies below the broken line in figure 4. Soliton solutions correspond to
those points for which condition (20) is satisfied, i.e. below the lineS(T ) = B(T )/N . For
the values ofS(T ) andB(T ) lying between these two lines, only ISMs can exist.

Clearly the variational character of our partial dressing method imposes certain
restrictions on the domain of applicability of our results. Thus, in order to determine the
degree to which our results are reliable for understanding the soliton properties in a realistic
biological context, we must compare them with those obtained by other methods. To our best
knowledge, multi-exciton (vibron) soliton states, arising on account of the exciton (vibron)–
phonon interaction, have been examined in only a few papers [29–35]. So Weidlich and
Heudorfer [30], Kislukha [33] and finally Lomdahl and Kerr in the context of DT [11]
investigated such solitons using semiclassical analysis, which corresponds to our choice
δ = 0, while Nakamura [32] and one of the present authors with co-workers [35] utilized
unitary transformation techniques with the choiceδ = 1 (full dressing approximation). The
superiority of the present approach corresponds to that part of the parameter space where
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it predicts lower estimates for the GS energy of the system. Substitutingδ = 0 in (16)
and δ = 1/(1 + B), which is a good approximation forδ in the range where the soliton
existence condition (20) is satisfied, we estimate thatEGS(δ)−EGS(δ = 0) ≈ −(2S/B)EB ,
which ensures better applicability of the partial dressing method with respect to the strict
semiclassical analysis in almost the whole parameter space of the system. Note that in the
limit of infinite adiabaticity(B → ∞) the difference between these two methods disappears,
the result which was to be expected. Repeating this procedure forδ = 1 andδ ≈ 1/(1+B)

we found thatEGS(δ) − EGS(1) < 0 if B(T ) > B0 (B0 = 0.65). This means that, when
the adiabaticity lies below this value (i.e.B(T ) < 0.65), one must takeδ = 1 while for the
rest our results are unaffected.

Let us now estimate how the variations in the vibron number and the temperature
could modify the above conclusions. As follows from figures 1–3 the dependences ofδ on
adiabaticity and coupling constant are qualitatively the same for all values ofN ; however,
increasingN significantly reduces the allowed range of the coupling constant in which (for
givenB(T )) the soliton may exist. This could be seen especially from the above-mentioned
condition for soliton existence (S(T ) < B(T )/N ). Concerning the thermal effects we note
that, within this mean-field method, these could be manifested only through the temperature
dependence of the coupling constant and the adiabaticity which increase on increase in
temperature. AtT = 0 they areS(0) = (3π/8)(EB/h̄ωB) and B(0) = (3π/8)(2J/h̄ωB)

while at high temperatures they can be approximated asS(∞) ≈ 3π(kBT /h̄ωB)S(0) and
B(∞) = 3π(kBT /h̄ωB)B(0). In order to understand how temperature affects the results
of the preceeding discussion, let us assume that we initially examine the system at zero
temperature. Furthermore let us suppose that the condition for soliton existence (20) is
satisfied; i.eS(0) < B(0)/N . Multiplying both sides of this inequality by 3π(kBT /h̄ωB)

we see that this condition is satisfied also forT 6= 0, so that the soliton survives even at
finite temperatures. The character of these states, however, could be modified owing to the
increase in adiabaticity parameter on a rise in temperature. Consequently, an increase in the
temperature drives the system towards the adiabatic limit; so it follows that the temperature
favours the ST mechanism of soliton formation.

4. Concluding remarks

Finally before using our results in order to examine the possibility of theN -vibron soliton
existence in anα-helix, let us estimate the contribution of the remaining interaction term
(Hint ) which has been neglected so far. Strictly following the mean-field procedure as
proposed for example in [48], this term could be approximated as

Hint = δ√
N

Jeff

∑
n,q

Fq

h̄ωB

[
1 − exp

(
iqR0

)]
exp

(
iqnR0

)
B+

n Bn+1

(
a+

q − a−q

)
+ HC. (21)

Corrections arising from this term are negligible in the adiabatic limit owing to the smallness
of δ since, in the final instance, it causes changes in the soliton parameters and GS energy
of the order of 1/B and 1/B2.

In the non-adiabatic limit we must putδ = 1 while (21) should be considered as a small
perturbation since it is of the order of

√
S (Fq/h̄ωB ∼ √

S) which in the soliton region is
small. Under these conditions, the ‘new’ phonons do not participate in soliton creation and
(21) represents the interaction of the soliton, which is the fundamental excitation ofHeff

for δ = 1, with phonons which now play the role of the thermal bath.
Finally we may summarize the results of the preceding sections.
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(1) Vibron (exciton)–phonon interaction may lead to soliton formation on account of
two mechanisms:

(a) ST in whichN vibrons (excitons) are captured in the common potential well created
by the large-radius static lattice distortion and which is fully equivalent to the formation
of a single large polaron and arises in the adiabatic limit only where the semiclassical
approximation for a phonon field is valid;

(b) as a result of the effective vibron–vibron interaction which prevails in the non-
adiabatic limit.

(2) The condition for the existence of solitons irrespective of the mechanism which
induces their creation is given byS(T ) < B(T )/N . WhenS(T ) > B(T )/N , the continuum
approximation is no longer valid and our approach fails to describe the properties of these
extremely localized states properly. Thus we satisfied ourselves just with pointing out that,
if (20) does not hold in our system, the so-called intrinsic self-localized vibrons analogous
to recently discovered intrinsic localized excitations such as phonons, magnons and Frenkel
excitons [44–47] should arise.

(3) The rise in temperature does not affect the soliton existence condition but may
change its character, driving the system towards the adiabatic (semiclassical) limit.

Using the set of parameters which is usually quoted as representative for anα-helix
and related molecules (ACN, for example) we found thatB(0) ' 0.14–0.16,EB = (10−23–
10−22) J andS ' 0.01–0.1. Clearly these values correspond to the non-adiabatic and
weak-coupling limit; so, ifN is not too large, a soliton may be formed. In this way our
results in a certain sense support the ideas of Lomdahl and Kerr [11] that a multiquantum
soliton is more relevant in realistic biological conditions than the originally proposed soliton.
However, the properties of these solitons which arise on account of induced vibron–vibron
interaction are quite different from those originally proposed. At 300 K,kBT /h̄ωB ' 1.95–
2.27, resulting inB ' 0.28–0.32 which still belongs to the non-adiabatic limit and therefore
does not change the character of the soliton.

In concluding this paper we must stress that our results only point to the possibility that
such solitons may be relevant as a transport mechanism in biological systems. However, the
extrapolation of these ideas to real systems should be taken with certain reserves. Namely
our results were obtained within the framework of the (over)simplified model where the
only connections with realistic biological systems are the values of the physical parameters
of system. Furthermore we focused on the examination of the equilibrium properties of
solitons, neglecting the dynamics. Therefore one of the next steps would be the examination
of soliton dynamics under the influence of a thermal bath whose coupling with a soliton
is defined byHint (equation (21)). Its influence should be manifested through the small
changes in soliton parameters which now become a function of time. According to some
previous analyses of related problems [49], we can assume that this interaction will lead to
diffusive motion of the soliton and in the final instance it will result in the finite lifetime
of the soliton. The examination of these effects is of particular interest and will be done
separately.
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